Proteasome Activity Influences UV-Mediated Subnuclear Localization Changes of NPM

نویسندگان

  • Henna M. Moore
  • Baoyan Bai
  • Olli Matilainen
  • Laureen Colis
  • Karita Peltonen
  • Marikki Laiho
چکیده

UV damage activates cellular stress signaling pathways, causes DNA helix distortions and inhibits transcription by RNA polymerases I and II. In particular, the nucleolus, which is the site of RNA polymerase I transcription and ribosome biogenesis, disintegrates following UV damage. The disintegration is characterized by reorganization of the subnucleolar structures and change of localization of many nucleolar proteins. Here we have queried the basis of localization change of nucleophosmin (NPM), a nucleolar granular component protein, which is increasingly detected in the nucleoplasm following UV radiation. Using photobleaching experiments of NPM-fluorescent fusion protein in live human cells we show that NPM mobility increases after UV damage. However, we show that the increase in NPM nucleoplasmic abundance after UV is independent of UV-activated cellular stress and DNA damage signaling pathways. Unexpectedly, we find that proteasome activity affects NPM redistribution. NPM nucleolar expression was maintained when the UV-treated cells were exposed to proteasome inhibitors or when the expression of proteasome subunits was inhibited using RNAi. However, there was no evidence of increased NPM turnover in the UV damaged cells, or that ubiquitin or ubiquitin recycling affected NPM localization. These findings suggest that proteasome activity couples to nucleolar protein localizations in UV damage stress.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

UV stimulation of nucleophosmin/B23 expression is an immediate-early gene response induced by damaged DNA.

Nucleophosmin/B23 (NPM/B23), a nucleolar protein, was rapidly up-regulated after UV irradiation (at 254 nm; 30 J/m(2)) in NIH 3T3 cells and HeLa/S3 cells. Levels of NPM/B23 mRNA peaked 45-60 min after UV treatment and returned to baseline by 12 h. Transcription inhibitor actinomycin D (5 microg/ml) prevented the UV-induced increase of NPM/B23 mRNA, suggesting that UV induction of NPM/B23 was me...

متن کامل

Ubiquitination and proteasomal degradation of nucleophosmin-anaplastic lymphoma kinase induced by 17-allylamino-demethoxygeldanamycin: role of the co-chaperone carboxyl heat shock protein 70-interacting protein.

Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) is a constitutively active fusion tyrosine kinase involved in lymphomagenesis of human anaplastic large cell lymphomas (ALCL), the maturation and activity of which depend on the association with the heat shock protein (hsp) 90 protein chaperone. Targeting hsp90 by the ansamycins geldanamycin and 17-allyl-amino-demethoxygeldanamycin (17-AAG) pro...

متن کامل

ATM regulates proteasome-dependent subnuclear localization of TRF1, which is important for telomere maintenance

Ataxia telangiectasia mutated (ATM), a PI-3 kinase essential for maintaining genomic stability, has been shown to regulate TRF1, a negative mediator of telomerase-dependent telomere extension. However, little is known about ATM-mediated TRF1 phosphorylation site(s) in vivo. Here, we report that ATM phosphorylates S367 of TRF1 and that this phosphorylation renders TRF1 free of chromatin. We show...

متن کامل

AKT regulates NPM dependent ARF localization and p53mut stability in tumors

Nucleophosmin (NPM) is known to regulate ARF subcellular localization and MDM2 activity in response to oncogenic stress, though the precise mechanism has remained elusive. Here we describe how NPM and ARF associate in the nucleoplasm to form a MDM2 inhibitory complex. We find that oligomerization of NPM drives nucleolar accumulation of ARF. Moreover, the formation of NPM and ARF oligomers antag...

متن کامل

UV-induced fragmentation of Cajal bodies

The morphology and composition of subnuclear organelles, such as Cajal bodies (CBs), nucleoli, and other nuclear bodies, is dynamic and can change in response to a variety of cell stimuli, including stress. We show that UV-C irradiation disrupts CBs and alters the distribution of a specific subset of CB components. The effect of UV-C on CBs differs from previously reported effects of transcript...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013